Sherman K. Stein, in the preface of his textbook Mathematics, The Man Made Universe, says "Mathematics is completely the work of man. Each theorem, each proof, is the product of the human mind. In mathematics all the cards can be put on the table. In this sense, mathematics is concrete, whereas the world is abstract." The order of operations is a mathematical convention that has been developed and refined over centuries by many mathematicians. Just about every student, at some point in their mathematical education, will run across the mnemonic BEDMAS (or PEDMAS if you live in the US). The usefulness of this mnemonic can be debated (Tina Cardone, the author of Nix the Tricks, wrote an article regarding this for the NCTM). I recently chatted with a teacher who was looking for resources to help his grade 7 students practice using the order of operations with decimal numbers. I created a "row game" for his students to practice this skill. A "row game" is an activity for students to work with a partner to evaluate a series of expressions. The expressions are written in two columns. One student evaluates the expressions in the left column and the other student evaluates the expressions in the right column. The expressions in each row evaluate to the same value. If the students don't get the same answer, they can work together to determine where the error was made. There are two reasons that I like row games. The first is that students get instant feedback. They don't need to wait for a teacher to correct and return a sheet to know if they are being successful. The second reason is that it gets students to work together to find their mistakes. The teacher can then focus on providing assistance to students who are having real conceptual difficulties, not just making small computational errors. Kate Nowak has created a shared Google drive folder where a large collection of row games are stored. A link to my row game for order of operations with decimals is below.
Confusion regarding the order of operations has lead to many debates and arguments on Facebook about the correct way to evaluate expressions. You might see expressions such as "6 ÷ 2(1 + 2)" or "48 ÷ 2(9 + 3)" discussed. These might be used to start a lively debate in math class. I really like Vi Hart's take on these types of problems. Take a moment to watch the video below. Vi's contention is that expressions like these are ambiguous and it is incumbent upon the author of the expression to add brackets or other grouping symbols to make their mathematical expression clear. The placement of implicit multiplication (sometimes called multiplication by juxtaposition or simply putting symbols side by side) in the order of operations has not been settled by mathematicians such that is is part of the convention for the order of operations. Despite this, calculators and computers have to make a decision on how to interpret this. You will find calculators that give different answers for these types of expressions. The Math Forum writes, "I suppose I agree with you that it would be easier and perhaps more consistent to give multiplication precedence over division everywhere; but of course there is no authority to decree this, so the more prudent approach is probably just to recognize that there really isn't any universal rule. " One method of avoiding this confusion is to write expressions is using Reverse Polish (RPN) notation. I'm old enough to have owned an HP calculator that used this notation. In RPN, the operator always follows all of its operands. For example, instead of writing "(1+2)÷(3+4)", you would write "1 2 + 3 4 + ÷". RPN often requires fewer key strokes to enter on a calculator because parentheses are not required. It is however more difficult to learn. Nova Scotia Mathematics Curriculum Outcomes Grade 9 N04  Students will be expected to explain and apply the order of operations, including exponents, with and without technology. Grade 7 N02  Students will be expected to demonstrate an understanding of the addition, subtraction, multiplication and division of decimals to solve problems (for more than onedigit divisors or more than twodigit multipliers, the use of technology is expected). EL
0 Comments
Leave a Reply. 
Archives
November 2018
Categories
All
