Practice is important. Whether it is playing the piano, shooting freethrows, popping an ollie or solving a quadratic equation you need to practice to improve. Some practice routines are more effective than others at helping students solidify their understanding. Practice can often seem tedious and it can be difficult to maintain the motivation to practice. In mathematics, students practice skills in a variety of ways. One style of practice that can help students stay motivated and engaged is purposeful practice. Instead of a page full of repetitive problems, students focus on an activity that has a mathematical goal to achieve. Dan Meyer wrote a blog post a few years ago titled "Purposeful Practice & Dandy Candies" that started me thinking about how to make activities in my classroom more purposeful. Open MiddleOne of my favourite sources of problems with purposeful practice is Open Middle. There is a large selection of questions organized by topic and grade level. Each question has an "open middle" meaning there are many ways to explore and solve the problem. Below is a question submitted to the Open Middle site by Robert Kaplinsky. In this question, students try to find the arrangement of digits that yields the product closest to 50. Students will try numerous different arrangements of digits and get lots of practice multiplying decimal numbers without it seeming tedious. The question can also be quickly modified to give additional practice. For example, just add a hundredths place onto one of the factors and use 5 different digits. Math GamesGames can be a great way to encourage students to practice. There are lots of examples of but I'm going to mention just two. The first goes by several names. Joe Schwartz wrote a great post about Factor Captor. A similar game is described on the NCTM Illuminations site called the Factor Game. Students alternate turns playing on board filled with numbers. The first player selects a number to cover and adds that number to their score. The second player finds all the factors of that number, covers them and totals those number to add to their score. The roles are then reversed and play continues until there are no uncovered numbers remaining. There is a lot of math in this game and it is fun to play. The second game is Horseshoes from Math4Love. This game is played with a deck of cards numbered 19. Two cards are drawn to form a twodigit target number. Then four more cards are drawn. Players use these four digits to create an equation using addition and subtraction that is as close as possible to the target number. For example, let's say that the target number is 25 and the four digits given are 1, 3, 6 and 9. A student might create the equation 3916 = 23. Another student might make the equation 13+6+9 = 28. There are lots of way to tweak this game for different levels of complexity. Both of these games allow for lots of numerical practice in a format that engages students. There are many excellent sources of ideas for mathematical games. My current 'goto' resource is a book titled Well Played, 68. Math PuzzlesThere are several mathematical puzzles that include lots of practice with numerical computations in pursuit of a solution. KenKen puzzles and Maze 100 from NRICH are two such puzzles that I've used. I also think that Yohaku puzzles are great. They are numerical puzzles where you need to determine the number that is in each square in order to make the column and row sum/products.
Desmos ActivitiesFor classrooms with the available technology, activities from Desmos.com are another way to practice with purpose. An activity that incorporates a lot of meaningful practice is Marbleslides. In this activity, student try to capture stars on a Cartesian grid by creating a path using functions that marbles roll down. Students work to refine their functions to capture as many marbles as possible. Another activity that generates lots of practice is Transformation Golf. Students use a series of rigid transformations to move a shape to specified location. They have to find an efficient path around several obstacles. Each successive challenge increases in complexity. IncentivesThere are also activities that have a nonmath goal for students to achieve. Lots of online math games have incentives for students such as badges to earn, experience points to accumulate or virtual prizes to win. There are also worksheets and activities with nonmath goals. Worksheets such as "Algebra with Pizzazz" and "Punchline Algebra" have a riddle to be solved once all of the questions are completed. In my classroom practice, I used a number of activities with these types of incentives and I think that many students find them exciting and fun. If students are excited to do math, I consider that a win. However, I think that these types of activities should be used with caution. We don't want to inadvertently send a message to our students that math isn't fun by itself so we have to disguise it (like sneaking vegetables into their favourite foods so kids will eat them). Please Share!If you have a favourite math activity, game or puzzle that gets students practicing math with a purpose, I'd love to hear about it. Please leave me a comment. EL
2 Comments
10/26/2017 01:09:10 pm
Really enjoying your blog. Have you read Dan Coyle's the Talent Code? He details what "deep practice" can look like, and how it changes the structure of our brains (myelination). Will enjoy exploring your blog more. Thank you.
Reply
Thanks for the comment Sarah. I have not read the Talent Code but it sounds interesting. I'm guessing there are some similar messages in the book Peak: Secrets from the New Science of Expertise by Anders Ericsson and Robert Pool which is what got me thinking about this topic initially.
Reply
Leave a Reply. 
Archives
July 2018
Categories
All
