When I got home, I did a search to find out why the machines were gone and ran across a story from Global News. It turns out that TD Bank had decided to retire all the coin counting machines in Canada in the wake of reports from the U.S. that the machines were shortchanging customers. In a segment on the Today Show called 'Rossen Reports', a team investigated the accuracy of a number of Coinstar machines as well as coincounting machines at various branches of TD Bank. The team tested the accuracy of the machines by carefully preparing bags filled with exactly $300 worth of pennies, nickles, dimes and quarters. They then used the machines to see how close their count was to $300. The Coinstar machines all checked out with the correct $300 total. The TD Bank machines did not fare so well. The totals on the machines tested at 5 different branches were: $299.95, $299.47, $299.30, $296.27 and $256.90. None of the machines returned an accurate $300 count. I don't think that machines can really be "100% accurate" all the time. What level of accuracy do you think is acceptable from a coincounting machine? How much time does it take to roll $300 worth of coins and how much is your time worth? I would probably accept $299.95 for the convenience of not having to roll that many coins. I would be a bit more hesitant to accept $296.27 and definitely would not accept $256.90. While the TD Bank machines were free for customers, in Canada, Coinstar machines apply a coin counting fee of 11.9 cents per dollar. For the $300 counted in this test, the fee would have been $35.70. That is a pretty hefty fee. Questions and EstimationsAccording to a class action lawsuit filed in New York in April 2016, TD’s coincounting machines processed 29 billion coins in 2012. Based on this figure and the data collected by the Rossen Report, how much money do you think customers lost? What factors did you consider when making this estimate? How would you design an experiment to test the accuracy of TD's coin counting machines? Would you test lots of different machines or a few machines multiple times? How many trials would you run to be confident in your results? What factors might contribute to the errors discovered in these machines? Nova Scotia Mathematics Curriculum Outcomes Mathematics 11 S02  Interpret statistical data, using: confidence intervals, confidence levels and margin of error. Mathematics 11 S03  Critically analyze society’s use of statistics. Grade 9 SP03  Students will be expected to develop and implement a project plan for the collection, display, and analysis of data by: formulating a question for investigation; choosing a data collection method that includes social considerations; selecting a population or a sample; collecting the data; displaying the collected data in an appropriate manner; drawing conclusions to answer the question. Grade 7 SP06  Students will be expected to conduct a probability experiment to compare the theoretical probability (determined using a tree diagram, table, or other graphic organizer) and experimental probability of two independent events. EL
0 Comments
There are some really big doors around Halifax. The door on Irving Shipbuilding's Halifax Shipyard Assembly and Ultra Hall facility is big enough for large "megablocks" of ships under construction to pass through. The doors at IMP Aerospace's Hangar #9 at the Stanfield International airport is big enough for large aircraft to pass through. Which door do you think is the largest? What Do You Mean by Largest?The first thing you might want to do is settle on what you mean by "largest". Do you mean width, height, area, mass or some other measurement? Each of these doors might be the largest for a specific measurement. For example, the aircraft hangar door is made of metal and quite probably has more mass than the shipyard door which is constructed of a polyester fabric. Estimating DimensionsThe shipyard door is really tall but the aircraft hangar door is really wide. Below are pictures of the two facilities from Google earth with the same scale so that you can compare the buildings that these doors are on. https://www.google.ca/maps/@44.6674497,63.5972041,542m/data=!3m1!1e3 https://www.google.ca/maps/@44.8701869,63.5322158,573m/data=!3m1!1e3 Door Dimensions and Surface Area
So the shipyard door has the largest height and the largest area but the hangar door has the largest width and the largest mass. Would you call this a tie? How would you determine the winner?
More Big DoorsDo you know of other big doors around Halifax? Have you seen bigger doors in other parts of Nova Scotia or the rest of Canada? What is your definition of door? Note of Thanks: I want to say thank you to the people at both Irving Shipyard and IMP Aerospace who were very helpful providing information for this post. EL
Here are a few questions that I thought about:
Below are some additional photos: Given the list of lego bricks, you could ask students a number of additional questions:
The Discovery Centre is currently working on a project to build Canada's largest Lego mosaic wall. The wall will be installed at the Discovery Centre's new location when it moves. Nova Scotia Mathematics Curriculum Outcomes Mathematics 7  N07 Students will be expected to compare, order, and position positive fractions, positive decimals (to thousandths), and whole numbers by using benchmarks, place value, and equivalent fractions and/or decimals. Mathematics 8  N03 Students will be expected to demonstrate an understanding of and solve problems involving percents greater than or equal to 0%. Mathematics 8  N04 Students will be expected to demonstrate an understanding of ratio and rate. Mathematics 9  N03 Students will be expected to demonstrate an understanding of rational numbers by comparing and ordering rational numbers and solving problems that involve arithmetic operations on rational numbers. Mathematics at Work 11  G02 Students will be expected to solve problems that involve scale. EL
I recently read an article on Wired about the Solar Voyager. A pair of engineers, Isaac Penny and Christopher Sam Soon, designed and built an autonomous, solar powered vessel. On June 1st, 2016 the 18 foot vessel, named Solar Voyager set off on its transAtlantic adventure from Gloucester, Massachusetts to Portugal, a journey of more than 4800 kilometres. They are predicting that this trip will take 4 months, assuming that there are no catastrophic events midAtlantic. One cool thing about this trip is that the Solar Voyager reports it position and other data online every 15 minutes at http://www.solarvoyager.com/trackatlantic.html. Currently, about twoweeks into its journey, Solar Voyager is just South of Halifax, Nova Scotia where I live. The image below shows how far the Solar Voyager has traveled during its first two weeks. That is 1/8 of the time estimated for the crossing. Based on the information below, do you think that it will reach its destination in 4 months? What factors did you consider when making your estimation? Some factors you might consider are currents, weather, equipment malfunction, obstacles/collisions, wear and tear, etc. There are so many variables at play that it must be very hard to make an accurate estimation. Some Questions/Estimates for Students:
One of the coolest things about this project is that these young engineers "built Solar Voyager in their free time, undertaking this voyage simply for the challenge." How can I commandeer this type of intrinsic motivation for students in math class? What about this project made them want to work so hard "just for the challenge" and not for some extrinsic reward. Was it because they were the ones who selected and designed the task? Did they have just the right skills so that they felt confident that they would be successful? What is something that was relevant to their lives? How did this project captivate their curiosity? Data Points:
Update: Solar Voyager ran into some trouble south of Nova Scotia. It appears it got tangled in some fishing gear and the props and rudders were fouled. After drifting for over a week, the vessel was picked up by HMCS St. John's, a Canadian Navy offshore patrol vessel. EL
Students and Staff at J.L. Ilsley High School recently returned from a March break trip to Italy. Their stories about Rome and pizza and gelato inspired this "Would You Rather?" math question. Most students are pretty familiar with pizza and have strong opinions to share on their favourite type and restaurant for pizza. Would you rather have a slice of pizza from New York or from Rome? The New York pizza costs $2.75 US per slice. The Rome pizza costs 1,50€ per 100 grams. In Rome, pizza by the slice or "pizza al taglio" is typically sold in rectangular pieces by weight. Prices are often listed per 100 grams. Prices can vary greatly depending upon the type and location of restaurant. Restaurants close to major tourist attractions in Rome are often much more expensive. The price I quote above is from Pizza Florida in Rome. Estimating the weight of a typical slice of pizza might be difficult for students. How much does a typical piece of pizza weigh? According to Pizza Pizza, a 1/10 slice of a 14 inch diameter pizza is approximately 110 grams. There is also the issue of currency conversion. You could ask for 3 Euros worth of pizza, but how much will that cost you in Canadian dollars? An online currency conversion website or app can help with currency exchange. The Nova Scotia Mathematics 10 curriculum has outcomes on both currency exchange and SI to imperial unit measurement conversions so I thought this would be a nice warm up question to be used in that course. In case you were wondering where you should go to eat pizza, here are the 14 top cities for pizza, as identified on the Conde Nast Traveler Best Pizza in the World list. Note that a Canadian city, Edmonton, made the list.
Nova Scotia Mathematics Curriculum Outcomes
Mathematics 10  M02 Students will be expected to apply proportional reasoning to problems that involve conversions between SI and imperial units of measure. Mathematics 10  FM01 Students will be expected to solve problems that involve unit pricing and currency exchange, using proportional reasoning. Revisiting the Classic Ferris Wheel Problem
This type of pseudocontext word problem robs students of the opportunity to explore and analyze realworld problems in much depth. Dan Meyer has written quite quite a lot about pseudocontext. My concern with the Ferris wheel problem is not that you can't model the height of a seat on a Ferris wheel with a sine function, it is why would you do it? Instead of doing a textbook problem with a fictional Ferris wheel, I decided to use a real Ferris wheel from a nearby amusement park that some of my students would be familiar with. I visited the park to take a video of the Ferris wheel in action. Below is a 30 second clip of the "Big Ellie" Ferris Wheel at Atlantic Playland. Notice and WonderI started by asking students what they noticed in the video. After brainstorming and recording the students observations I asked students what they wondered about in the video. They asked questions like "how fast is the ride going?", "how tall is this Ferris wheel?", "how far can you see from the top of the ride?", "how long does the ride last?". In order to investigate these questions further we needed to estimate some values such as the radius of the wheel, how long it takes to make one revolution, and the height of the central axis about the ground. I asked students to estimate these values using the clues in the video we watched. We watched it several times in order to get some good estimates. I also talked about some of the mental math required to operate a ride like this. Because it is belt driven, you have to load the Ferris wheel so that it is equally balanced around the wheel. Otherwise, one side of the wheel would become too heavy and the drive cable would slip in the rim and the wheel wouldn't be able to turn! This requires a lot of on the fly estimates of weights of the riders as it is being loaded. In order to get a see how good we did with our estimations we turned to the internet in order to try to hunt down some of these values with a Google search. This lead to a discussion about what keywords we could use to hunt down this information. A search of "height of the central axis of the Ferris wheel at Atlantic Playland" was not very fruitful... an essential skill to solve a problem like this is to translate mathematical language into common terms that you can use for a Google search. Ve Anusic has a great blog post where he discusses a similar problem and the discussion with his students about the information you need and the information you might find online. First we did a search to find Atlantic Playland's website and found that they called their ride "Big Ellie". A search for this name lead us to believe that this Ferris wheel is a No. 5 Big Eli wheel made by Eli Bridge (I later emailed the park and confirmed that this is indeed the model of their Ferris wheel). Eli Bridge's website gave us some interesting information but not exactly what we were looking for. A bit more searching and we were able to find a pdf of the owner's manual for this ride that included a helpful diagram.
It is only after we were able to answer some of the students' questions regarding the video of the Ferris wheel did we start to talk how we might mathematically modeling the height of a person riding the wheel over time and the periodic nature of this function. Students were much better able to make sense of this visual model once they had a good grasp of the context of the problem.
Nova Scotia Mathematics Curriculum Outcomes Mathematics 12  RF03 Represent data, using sinusoidal functions, to solve problems. Precalculus 12  T04 Graph and analyze the trigonometric functions sine, cosine and tangent to solve problems. EL
What sort of questions might your students have about this train schedule? How long is this train at the station during a typical week? If this train is at the station in Montréal for a similar amount of time, then how long is each trip from Halifax to Montréal? What is the average speed of this train during its trip? What do you think the schedule looks like that is posted at the station in Montréal? How would this trip via train compare to a trip via car or plane (time, cost, etc.)? EL
I drive past this building every day on my way to work. It is Young Tower at 6080 Young Street in Halifax. I think it is pretty interesting... I used this picture as a problem solving warm up activity for a group of grade 10 math teachers recently. I gave each group of teachers a large piece of chart paper and asked them to divide the paper in half with a line. I asked teachers to brainstorm what they notice about this picture and record it on one half of their chart paper. I asked them to look at the picture using a number of lenses. What would an architect notice about this image? What would a person who worked at this building notice about this picture? What would a mathematician notice about this picture? After about 5 minutes of brainstorming, I asked each group to tell me one thing they noticed and I recorded it at the front of the room. Groups noticed things like the number and size of windows on the building ("about half the lateral surface is glass"), the shape of the building ("almost a cube"), the picture must have been taken on a weekend because there are very few cars in the parking lot, and the weather was really nice that day. Next I asked them to brainstorm what they wonder about this picture and record in on the other half of their chart paper. If this picture was the start of a math problem, what could that math problem be? What things that they noticed sparked their curiosity? After another 5 minutes, I asked each group once again to tell me one thing that they wondered. After looking at all the questions that the groups posed, we selected one and asked everyone to estimate an answer to that question. I also asked them what information would they need to make a more accurate estimate. Once they had an initial estimate, I gave them some additional information about the building and let them revise their estimate. We had several really interesting questions posed by groups. Some questions concerned the shape of the building, like "How close to a perfect cube is this building?" Other questions focused on finance such as, "How much revenue is generated by leasing all of the office space in this building?" One of my favourite 'wonderings' was, "How much wrapping paper would it take to wrap this building up like a Christmas present?"
This "I Notice/I Wonder" problem solving strategy is one that I saw shared by Max RayRiek from the Math Forum. He has a blog where he talks about Noticing and Wondering in High School. This strategy starts off with brainstorming to let students get familiar and engaged with a problem situation before jumping into a specific question to solve. By having students come up with questions, you'll often get more engagement and interest. It also allows you to respond to interesting suggestions from students that you might not have considered. It allows everyone in the class meaningful participation in the conversation because everyone has something that they can notice. This strategy might also create additional opportunities for differentiation by using several different questions that students suggested. EL
Would You Rather have the revenue from an amusement park Ferris wheel or carousel ride?I'm a big fan of questions based on the "Would You Rather?" prompt. This weekend, my son and I visited Atlantic Playland for the first time. We bought a book of tickets and started exploring some of the rides. Our favorites were the Ferris wheel and the Nostalgic Carousel. The Ferris wheel costs us 4 tickets per ride and the carousel cost us 3 tickets per ride. If you were an amusement park operator, which ride would you rather have? Why do you think these rides cost a different number of tickets? Both rides lasted about the same amount of time. The carousel holds more people and is much faster to load and unload. Operating a carousel does not take as much training as operating a Ferris wheel. There is a surprising amount of mental math and estimation require to operate a Ferris wheel. Loading and unloading a Ferris wheel takes a bit of time as the weight of the riders has to be balanced. The Ferris wheel appears to be a more popular ride however and often lots of riders while the carousel was never very full (the Ferris wheel can hold up to 24 people in 12, 2person seats while the Ferris wheel can hold over 30 at a time).
What do you think? If you operated an amusement park, which ride would you want to have? Update: This question is now on the Would You Rather website! EL 
Archives
March 2017
Categories
All
